skip to main content


Search for: All records

Creators/Authors contains: "Gerling, Alexandra B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sediment traps were deployed to assess the mass and composition (iron, manganese, total organic carbon, and total nitrogen) of settling particulates in the water column of two drinking water reservoirs—Beaverdam Reservoir and Falling Creek Reservoir, both located in Vinton, Virginia, USA. Sediment traps were deployed at two depths in each reservoir to capture both epilimnetic and hypolimnetic (total) sediment flux. The particulates were collected from the traps approximately fortnightly from April to December from 2018 to 2022, then filtered, dried, and analyzed for either iron and manganese or total organic carbon and total nitrogen. Beaverdam and Falling Creek are owned and operated by the Western Virginia Water Authority as primary or secondary drinking water sources for Roanoke, Virginia. The sediment trap dataset consists of logs detailing the sample filtering process, the mass of dried particulates from each filter, and the raw concentration data for iron (Fe) and manganese (Mn), total organic carbon (TOC) and total nitrogen (TN). The final products are the calculated downward fluxes of solid Fe, Mn, TOC and TN during the deployment periods. 
    more » « less
  2. Abstract

    Oxygen availability is decreasing in many lakes and reservoirs worldwide, raising the urgency for understanding how anoxia (low oxygen) affects coupled biogeochemical cycling, which has major implications for water quality, food webs, and ecosystem functioning. Although the increasing magnitude and prevalence of anoxia has been documented in freshwaters globally, the challenges of disentangling oxygen and temperature responses have hindered assessment of the effects of anoxia on carbon, nitrogen, and phosphorus concentrations, stoichiometry (chemical ratios), and retention in freshwaters. The consequences of anoxia are likely severe and may be irreversible, necessitating ecosystem‐scale experimental investigation of decreasing freshwater oxygen availability. To address this gap, we devised and conducted REDOX (the Reservoir Ecosystem Dynamic Oxygenation eXperiment), an unprecedented, 7‐year experiment in which we manipulated and modeled bottom‐water (hypolimnetic) oxygen availability at the whole‐ecosystem scale in a eutrophic reservoir. Seven years of data reveal that anoxia significantly increased hypolimnetic carbon, nitrogen, and phosphorus concentrations and altered elemental stoichiometry by factors of 2–5× relative to oxic periods. Importantly, prolonged summer anoxia increased nitrogen export from the reservoir by six‐fold and changed the reservoir from a net sink to a net source of phosphorus and organic carbon downstream. While low oxygen in freshwaters is thought of as a response to land use and climate change, results from REDOX demonstrate that low oxygen can also be adriverof major changes to freshwater biogeochemical cycling, which may serve as an intensifying feedback that increases anoxia in downstream waterbodies. Consequently, as climate and land use change continue to increase the prevalence of anoxia in lakes and reservoirs globally, it is likely that anoxia will have major effects on freshwater carbon, nitrogen, and phosphorus budgets as well as water quality and ecosystem functioning.

     
    more » « less